Nguyên lý hoạt động và nền tảng cơ bản của cách tạo trí tuệ nhân tạo

Trong những năm gần đây, trí tuệ nhân tạo AI được nhiều người biết đến và cách tạo trí tuệ nhân tạo cũng trở thành một chủ đề nóng hổi được mọi người quan tâm. Để hiểu rõ hơn về nguyên lý hoạt động và nền tảng cơ bản của cách tạo trí tuệ nhân tạo, bạn hãy cùng FUNiX khám phá ngay trong bài viết này.

Trí tuệ nhân tạo được hình thành như thế nào? (Nguồn ảnh: Internet)
Trí tuệ nhân tạo được hình thành như thế nào? (Nguồn ảnh: Internet)

1. Nguyên lý hoạt động của AI là gì?

Trí tuệ nhân tạo (AI) hoạt động bằng cách hợp nhất các bộ dữ liệu lớn với các thuật toán, trải qua quá trình xử lý lặp đi lặp lại một cách thông minh để tiếp thu thông tin từ các mẫu và tính năng mà chúng phân tích.

Mỗi khi AI thực hiện một chu kỳ xử lý dữ liệu, nó tự động kiểm tra và đánh giá hiệu suất của mình, từ đó mở rộng kiến thức chuyên sâu. Điều này tạo ra một quy trình tự động, nơi mà AI không chỉ cập nhật thông tin từ dữ liệu mà còn liên tục cải thiện và mở rộng khả năng hiểu biết của mình thông qua các chu trình học tập tiếp theo.

>>> Xem thêm: xTalk 68: CEO Founder Cohost AI chia sẻ con đường khởi nghiệp với trí tuệ

2. Nền tảng cơ bản cách tạo trí tuệ nhân tạo

Quá trình tạo ra trí tuệ nhân tạo bắt đầu với việc kết hợp hoạt động của hai nền tảng quan trọng: Deep Learning và Machine Learning. Cả hai nền tảng này đều được xây dựng từ sự kết hợp nhiều thuật toán học máy và dữ liệu phức tạp.

Cách tạo trí tuệ nhân tạo bằng Machine Learning hay Máy học tập trung vào việc sử dụng dữ liệu và thuật toán để mô phỏng cách con người học. Qua thời gian, nó ngày càng cải thiện độ chính xác của các hành động khi tiếp xúc với dữ liệu mới. Ví dụ như công cụ tìm kiếm Google cập nhật thông tin ngày càng chính xác hơn theo thời gian dựa trên tương tác và phản hồi của người dùng.

Nền tảng cơ bản của cách tạo ra AI là gì? (Nguồn ảnh: Internet)
Nền tảng cơ bản của cách tạo ra AI là gì? (Nguồn ảnh: Internet)

Deep Learning hoặc Học sâu tập trung vào việc sử dụng mạng nơ-ron thần kinh nhân tạo với nhiều lớp để học và cải thiện khả năng đưa ra kết luận tương tự như não người. Điển hình là công nghệ nhận diện hình ảnh của Facebook, sử dụng Deep Learning để tự động nhận diện khuôn mặt và thông báo khi có ảnh chứa khuôn mặt của bạn. Điều này là kết quả của việc liên tục phân tích dữ liệu để xây dựng kiến thức chuyên sâu và đưa ra dự đoán chính xác.

2.1 Các kỹ thuật toán học được ứng dụng để tạo AI

Có nhiều kỹ thuật và thuật toán học máy được ứng dụng trong cách tạo trí tuệ nhân tạo như:

Trí tuệ nhân tạo được tạo ra từ kỹ thuật toán học nào? (Nguồn ảnh: Internet)
Trí tuệ nhân tạo được tạo ra từ kỹ thuật toán học nào? (Nguồn ảnh: Internet)

>> Xem thêm: Điểm cộng của khóa học về Trí tuệ nhân tạo tại FUNiX

2.2 Ngôn ngữ nền tảng sử dụng trong cách tạo trí tuệ nhân tạo

Sau khi phát triển trí tuệ nhân tạo ở dạng tiềm năng thành công, bước tiếp theo sẽ chuyển đổi nó thành ứng dụng cụ thể. Quá trình này được thực hiện thông qua 4 ngôn ngữ lập trình cơ bản trên các nền tảng ứng dụng:

>>> Xem thêm: Hé lộ hình ảnh mô phỏng Bảo tàng Robot và Trí tuệ nhân tạo Seoul

3. Khóa học Machine Learning tại FUNiX có tốt không?

Khóa học trí tuệ nhân tạo chất lượng tại FUNiX
Khóa học trí tuệ nhân tạo chất lượng tại FUNiX

FUNiX là tổ chức giáo dục cung cấp các khóa học về công nghệ thông tin, đặc biệt là khóa học về Machine Learning giúp học viên có nền tảng kiến thức tốt.

Bạn sẽ được học để hiểu rõ về Machine Learning trong các dự án thực tế. Khóa học cung cấp kiến thức chuyên sâu về bài toán hồi quy và các thuật toán liên quan, giúp bạn có cái nhìn sâu sắc về phân loại và phân lớp trong Supervised Learning. Học viên sẽ trải qua quá trình đào tạo về thuật toán học sâu trong thị giác máy tính và xử lý ngôn ngữ tự nhiên.

Quy trình giải quyết các bài toán thực tế liên quan đến học máy sẽ được trình bày chi tiết, bao gồm cả kỹ năng xử lý và trích chọn đặc trưng, cũng như xử lý dữ liệu mất cân bằng. Khóa học Machine Learning của FUNiX được chia thành các môn học chính:

Đây là cơ hội để học viên không chỉ nắm bắt lý thuyết mà còn áp dụng kiến thức vào thực tế, với mục tiêu cuối cùng là trở thành những lập trình viên chuyên nghiệp trong lĩnh vực Machine Learning.

Bên cạnh đó, FUNiX thường xuyên cập nhật liên tục theo xu hướng thị trường, mang đến cho học viên những kiến thức mới và thể hiện thông tin chính xác nhất về lĩnh vực trí tuệ nhân tạo. Đội ngũ Mentor và Hannah tại FUNiX luôn sẵn sàng hỗ trợ học viên, giải đáp mọi thắc mắc một cách nhanh chóng, giúp họ đạt được kết quả tốt nhất trong quá trình học.

Hi vọng rằng bài viết sẽ giúp bạn có cái nhìn tổng quan về nguyên lý hoạt động và cách tạo trí tuệ nhân tạo. Nếu bạn cảm thấy hứng thú và muốn khám phá thêm về lĩnh vực này, hãy tham gia các khóa học tại FUNiX ngay.

>>> Xem thêm chuỗi bài viết liên quan:

PGS ĐH Deakin (Úc): Trí tuệ nhân tạo và cơ hội cho Việt Nam

Thách thức lớn nhất cho ứng viên trong ngành Trí tuệ nhân tạo

Trí tuệ nhân tạo “mô phỏng” giác quan của con người

Đưa trí tuệ nhân tạo vào quản lý rủi ro cho ngành Thuế

Dương Thị Ly A.

Link nội dung: https://melodious.edu.vn/nguyen-tac-tao-ra-tri-tue-nhan-tao-a21931.html