Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • Công Nghệ
  • Ẩm Thực
  • Kinh Nghiệm Sống
  • Du Lịch
  • Hình Ảnh Đẹp
  • Làm Đẹp
  • Phòng Thủy
  • Xe Đẹp
  • Du Học
Công Nghệ Ẩm Thực Kinh Nghiệm Sống Du Lịch Hình Ảnh Đẹp Làm Đẹp Phòng Thủy Xe Đẹp Du Học
  1. Trang chủ
  2. Hình Ảnh Đẹp
Mục Lục

Multiple EM for Motif Elicitation

avatar
Katan
13:36 30/11/2025
Theo dõi trên

Mục Lục

Multiple Expectation maximizations for Motif Elicitation (MEME) is a tool for discovering motifs in a group of related DNA or protein sequences.[1]

A motif is a sequence pattern that occurs repeatedly in a group of related protein or DNA sequences and is often associated with some biological function. MEME represents motifs as position-dependent letter-probability matrices which describe the probability of each possible letter at each position in the pattern. Individual MEME motifs do not contain gaps. Patterns with variable-length gaps are split by MEME into two or more separate motifs.

MEME takes as input a group of DNA or protein sequences (the training set) and outputs as many motifs as requested. It uses statistical modeling techniques to automatically choose the best width, number of occurrences, and description for each motif.

MEME is the first of a collection of tools for analyzing motifs called the MEME suite.

The MEME algorithm could be understood from two different perspectives. From a biological point of view, MEME identifies and characterizes shared motifs in a set of unaligned sequences. From the computer science aspect, MEME finds a set of non-overlapping, approximately matching substrings given a starting set of strings.[citation needed]

MEME can be used to find similar biological functions and structures in different sequences. It is necessary to take into account that the sequences variation can be significant and that the motifs are sometimes very small. It is also useful to take into account that the binding sites for proteins are very specific. This makes it easier to reduce wet-lab experiments (saving cost and time). Indeed, to better discover the motifs relevant from a biological point it is necessary to carefully choose: the best width of motifs, the number of occurrences in each sequence, and the composition of each motif.

The algorithm uses several types of well known functions:

  • Expectation maximization (EM).
  • EM based heuristic for choosing the EM starting point.
  • Maximum likelihood ratio based (LRT-based) heuristic for determining the best number of model-free parameters.
  • Multi-start for searching over possible motif widths.
  • Greedy search for finding multiple motifs.

However, one often doesn't know where the starting position is. Several possibilities exist: exactly one motif per sequence, or one or zero motif per sequence, or any number of motifs per sequence.

  • Sequence motif
  • Sequence alignment
  • The MEME Suite — Motif-based sequence analysis tools
  • GPU Accelerated version of MEME
  • EXTREME — An online EM implementation of the MEME model for fast motif discovery in large ChIP-Seq and DNase-Seq Footprinting data
0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Trang thông tin tổng hợp melodious

Website melodious là blog chia sẻ vui về đời sống ở nhiều chủ đề khác nhau giúp cho mọi người dễ dàng cập nhật kiến thức. Đặc biệt có tiêu điểm quan trọng cho các bạn trẻ hiện nay.

© 2025 - melodious

Kết nối với melodious

vntre
vntre
vntre
vntre
vntre
thời tiết hải phòng Lịch âm 789bet
Trang thông tin tổng hợp
  • Trang chủ
  • Công Nghệ
  • Ẩm Thực
  • Kinh Nghiệm Sống
  • Du Lịch
  • Hình Ảnh Đẹp
  • Làm Đẹp
  • Phòng Thủy
  • Xe Đẹp
  • Du Học
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký